Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 941
1.
J Cell Mol Med ; 28(9): e18293, 2024 May.
Article En | MEDLINE | ID: mdl-38722298

Charcot-Marie-Tooth type 2A (CMT2A) is an inherited sensorimotor neuropathy associated with mutations within the Mitofusin 2 (MFN2) gene. These mutations impair normal mitochondrial functioning via different mechanisms, disturbing the equilibrium between mitochondrial fusion and fission, of mitophagy and mitochondrial axonal transport. Although CMT2A disease causes a significant disability, no resolutive treatment for CMT2A patients to date. In this context, reliable experimental models are essential to precisely dissect the molecular mechanisms of disease and to devise effective therapeutic strategies. The most commonly used models are either in vitro or in vivo, and among the latter murine models are by far the most versatile and popular. Here, we critically revised the most relevant literature focused on the experimental models, providing an update on the mammalian models of CMT2A developed to date. We highlighted the different phenotypic, histopathological and molecular characteristics, and their use in translational studies for bringing potential therapies from the bench to the bedside. In addition, we discussed limitations of these models and perspectives for future improvement.


Charcot-Marie-Tooth Disease , Disease Models, Animal , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Charcot-Marie-Tooth Disease/therapy , Charcot-Marie-Tooth Disease/metabolism , Animals , Humans , Mutation , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Dynamics/genetics
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 443-449, 2024 Apr 10.
Article Zh | MEDLINE | ID: mdl-38565510

OBJECTIVE: To explore the clinical manifestations and genetic basis for a Chinese pedigree affected with atypical Charcot-Marie-Tooth disease type 1 A (CMT1A). METHODS: A patient admitted to the Department of Neurology, Xijing Hospital Affiliated to Air Force Medical University in June 2022 was selected as the study subject. Clinical data of the patient was collected, and 17 family members from four generations of this pedigree were traced based on pes arcuatus and atypical clinical symptoms. Neuroultrasound and genetic testing were carried out on available family members. Whole exome sequencing and multiple ligation-dependent probe amplification assay were carried out for the proband and some of the affected members of the pedigree. RESULTS: The proband, a 15-year-old male, had presented with paroxystic limb pain with weakness, accompanied by pes cavus and hypertrophy of gastrocnemius muscles, without stork leg sign caused by muscles atrophy in the distal lower extremities. MRI has revealed no sign of fat infiltration in the muscles of both legs. Nerve conduction examination had indicated damages of the sensory and motor nerves of the limbs, mainly with demyelinating changes. Seven members of the pedigree had pes arcuatus, including 5 presenting with paroxysmal neuropathic pain and myasthenia in the limbs, whilst 2 were without any clinical symptoms. Neurosonography of the proband, his brother, father and aunt showed thickened peripheral nerves of the extremities with unclear bundle structure. Genetic analysis revealed a large repeat encompassing exons 1 to 5 of the PMP22 gene and flanking regions (chr17: 15133768_15502298) in some of the affected members, which was predicted to be pathogenic. CONCLUSION: The duplication of PMP22 gene was considered to be pathogenic for this CMT1A pedigree.


Charcot-Marie-Tooth Disease , Male , Humans , Adolescent , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Pedigree , Myelin Proteins/genetics , Muscle, Skeletal , China , Gene Duplication
3.
Neurology ; 102(7): e209174, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38513194

BACKGROUND AND OBJECTIVES: Germline truncating variants in the DRP2 gene (encoding dystrophin-related protein 2) cause the disruption of the periaxin-DRP2-dystroglycan complex and have been linked to Charcot-Marie-Tooth disease. However, the causality and the underlying phenotype of the genetic alterations are not clearly defined. METHODS: This cross-sectional retrospective observational study includes 9 patients with Charcot-Marie-Tooth disease (CMT) with DRP2 germline variants evaluated at 6 centers throughout Spain. RESULTS: We identified 7 Spanish families with 4 different DRP2 likely pathogenic germline variants. In agreement with an X-linked inheritance, men harboring hemizygous DRP2 variants presented with an intermediate form of CMT, whereas heterozygous women were asymptomatic. Symptom onset was variable (36.6 ± 16 years), with lower limb weakness and multimodal sensory loss producing a mild-to-moderate functional impairment. Nerve echography revealed an increase in the cross-sectional area of nerve roots and proximal nerves. Lower limb muscle magnetic resonance imaging confirmed the presence of a length-dependent fatty infiltration. Immunostaining in intradermal nerve fibers demonstrated the absence of DRP2 and electron microscopy revealed abnormal myelin thickness that was also detectable in the sural nerve sections. DISCUSSION: Our findings support the causality of DRP2 pathogenic germline variants in CMT and further define the phenotype as a late-onset sensory and motor length-dependent neuropathy, with intermediate velocities and thickening of proximal nerve segments.


Charcot-Marie-Tooth Disease , Germ-Line Mutation , Female , Humans , Male , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Myelin Sheath/pathology , Peripheral Nerves/diagnostic imaging , Phenotype , Cross-Sectional Studies , Retrospective Studies , Pedigree , Young Adult , Middle Aged , Aged
4.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Article En | MEDLINE | ID: mdl-38383802

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Arthrogryposis , Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Phosphatidylinositol 3-Kinases , Mice , Animals , Proto-Oncogene Proteins c-akt , Rodentia/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Myelin Proteins/genetics , Myelin Proteins/metabolism , TOR Serine-Threonine Kinases
5.
Mitochondrion ; 74: 101825, 2024 01.
Article En | MEDLINE | ID: mdl-38092249

Mutations in Mitofusin2 (MFN2) associated with the pathology of the debilitating neuropathy Charcot-Marie-Tooth type 2A (CMT2A) are known to alter mitochondrial morphology. Previously, such mutations have been shown to elicit two diametrically opposite phenotypes - while some mutations have been causally linked to enhanced mitochondrial fragmentation, others have been shown to induce hyperfusion. Our study identifies one such MFN2 mutant, T206I that causes mitochondrial hyperfusion. Cells expressing this MFN2 mutant have elongated and interconnected mitochondria. T206I-MFN2 mutation in the GTPase domain increases MFN2 stability and renders cells susceptible to stress. We show that cells expressing T206I-MFN2 have a higher predisposition towards mitophagy under conditions of serum starvation. We also detect increased DRP1 recruitment onto the outer mitochondrial membrane, though the total DRP1 protein level remains unchanged. Here we have characterized a lesser studied CMT2A-linked MFN2 mutant to show that its presence affects mitochondrial morphology and homeostasis.


Charcot-Marie-Tooth Disease , Mitophagy , Humans , Mitochondrial Dynamics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Mutation , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
6.
Brain Pathol ; 34(1): e13200, 2024 01.
Article En | MEDLINE | ID: mdl-37581289

Myelin protein zero (MPZ/P0) is a major structural protein of peripheral nerve myelin. Disease-associated variants in the MPZ gene cause a wide phenotypic spectrum of inherited peripheral neuropathies. Previous nerve biopsy studies showed evidence for subtype-specific morphological features. Here, we aimed at enhancing the understanding of these subtype-specific features and pathophysiological aspects of MPZ neuropathies. We examined archival material from two Central European centers and systematically determined genetic, clinical, and neuropathological features of 21 patients with MPZ mutations compared to 16 controls. Cases were grouped based on nerve conduction data into congenital hypomyelinating neuropathy (CHN; n = 2), demyelinating Charcot-Marie-Tooth (CMT type 1; n = 11), intermediate (CMTi; n = 3), and axonal CMT (type 2; n = 5). Six cases had combined muscle and nerve biopsies and one underwent autopsy. We detected four MPZ gene variants not previously described in patients with neuropathy. Light and electron microscopy of nerve biopsies confirmed fewer myelinated fibers, more onion bulbs and reduced regeneration in demyelinating CMT1 compared to CMT2/CMTi. In addition, we observed significantly more denervated Schwann cells, more collagen pockets, fewer unmyelinated axons per Schwann cell unit and a higher density of Schwann cell nuclei in CMT1 compared to CMT2/CMTi. CHN was characterized by basal lamina onion bulb formation, a further increase in Schwann cell density and hypomyelination. Most late onset axonal neuropathy patients showed microangiopathy. In the autopsy case, we observed prominent neuromatous hyperinnervation of the spinal meninges. In four of the six muscle biopsies, we found marked structural mitochondrial abnormalities. These results show that MPZ alterations not only affect myelinated nerve fibers, leading to either primarily demyelinating or axonal changes, but also affect non-myelinated nerve fibers. The autopsy case offers insight into spinal nerve root pathology in MPZ neuropathy. Finally, our data suggest a peculiar association of MPZ mutations with mitochondrial alterations in muscle.


Charcot-Marie-Tooth Disease , Myelin P0 Protein , Humans , Myelin P0 Protein/genetics , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Mutation/genetics , Proteins/genetics , Biopsy
7.
J Neuromuscul Dis ; 11(1): 221-232, 2024.
Article En | MEDLINE | ID: mdl-38108359

Charcot-Marie-Tooth disease 4H(CMT4H) is an autosomal recessive demyelinating form of CMT caused by FGD4/FRABIN mutations. CMT4H is characterized by early onset and slowly progressing motor and sensory deficits in the distal extremities, along with foot deformities. We describe a patient with CMT4H who presented with rapidly progressing flaccid quadriparesis during the postpartum period, which improved significantly with steroid therapy. Magnetic resonance imaging and ultrasonography demonstrated considerable nerve thickening with increased cross-sectional area in the peripheral nerves. A nerve biopsy revealed significant demyelination and myelin outfolding. This is the first report of an Indian patient with a novel homozygous nonsense c.1672C>T (p.Arg558Ter) mutation in the FGD4 gene, expanding the mutational and phenotypic spectrum of this disease.


Charcot-Marie-Tooth Disease , Female , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Microfilament Proteins/genetics , Pedigree , Mutation , Phenotype , Guanine Nucleotide Exchange Factors/genetics
8.
Am J Case Rep ; 24: e940284, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38117749

BACKGROUND The anesthetic management of patients with Charcot-Marie-Tooth disease (CMT) requires special deliberation. Previous literature has suggested that patients with CMT may have increased sensitivity to non-depolarizing neuromuscular blocking agents, and hyperkalemia associated with the administration of succinylcholine has been reported. The potential risk of malignant hyperthermia and underlying cardiopulmonary abnormalities, such as pre-existing arrhythmias, cardiomyopathy, or respiratory muscle weakness, must also be considered in patients with CMT. CASE REPORT We describe a case of a patient with a history of CMT and multivessel coronary artery disease who underwent coronary artery bypass grafting (CABG). Careful consideration was given to the anesthetic plan, which consisted of thorough pre- and perioperative evaluation of cardiac function, total intravenous anesthesia with propofol and remifentanil infusions, the use of a non-depolarizing neuromuscular blocking agent, and utilization of a malignant hyperthermia protocol with avoidance of volatile anesthetics to decrease the possible risk of malignant hyperthermia. Following a 3-vessel CABG, no anesthetic or surgical complications were noted and the patient was discharged on postoperative day 6 after an uneventful hospital course. CONCLUSIONS Exacerbation of underlying cardiac and pulmonary abnormalities associated with the pathophysiology of CMT, as well as patient response to neuromuscular blocking and volatile agents, should be of concern for the anesthesiologist when anesthetizing a patient with CMT. Therefore, CMT patients undergoing surgery require special consideration of their anesthetic management plan in order to ensure patient safety and optimize perioperative outcomes.


Anesthetics , Charcot-Marie-Tooth Disease , Coronary Artery Disease , Malignant Hyperthermia , Humans , Coronary Artery Disease/complications , Coronary Artery Disease/surgery , Charcot-Marie-Tooth Disease/complications , Charcot-Marie-Tooth Disease/pathology , Malignant Hyperthermia/complications , Coronary Artery Bypass
10.
Nat Commun ; 14(1): 6558, 2023 10 17.
Article En | MEDLINE | ID: mdl-37848414

The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-ß-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc may be a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, suggesting a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.


Charcot-Marie-Tooth Disease , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Intermediate Filaments , Mutation , Glycosylation , Acetylglucosamine , Protein Processing, Post-Translational
11.
J Peripher Nerv Syst ; 28(4): 629-641, 2023 12.
Article En | MEDLINE | ID: mdl-37749855

BACKGROUND AND AIMS: Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disorder mainly caused by abnormally expanded GGC repeats within the NOTCH2NLC gene. Most patients with NIID show polyneuropathy. Here, we aim to investigate diagnostic electrophysiological markers of NIID. METHODS: In this retrospective dual-center study, we reviewed 96 patients with NOTCH2NLC-related NIID, 94 patients with genetically confirmed Charcot-Marie-Tooth (CMT) disease, and 62 control participants without history of peripheral neuropathy, who underwent nerve conduction studies between 2018 and 2022. RESULTS: Peripheral nerve symptoms were presented by 53.1% of patients with NIID, whereas 97.9% of them showed peripheral neuropathy according to electrophysiological examinations. Patients with NIID were characterized by slight demyelinating sensorimotor polyneuropathy; some patients also showed mild axonal lesions. Motor nerve conduction velocity (MCV) of the median nerve usually exceeded 35 m/s, and were found to be negatively correlated with the GGC repeat sizes. Regarding the electrophysiological differences between muscle weakness type (n = 27) and non-muscle weakness type (n = 69) of NIID, nerve conduction abnormalities were more severe in the muscle weakness type involving both demyelination and axonal impairment. Notably, specific DWI subcortical lace sign was presented in only 33.3% of muscle weakness type, thus it was difficult to differentiate them from CMT. Combining age of onset, distal motor latency, and compound muscle action potential of the median nerve showed the optimal diagnostic performance to distinguish NIID from major CMT (AUC = 0.989, sensitivity = 92.6%, specificity = 97.4%). INTERPRETATION: Peripheral polyneuropathy is common in NIID. Our study suggest that nerve conduction study is useful to discriminate NIID.


Charcot-Marie-Tooth Disease , Neurodegenerative Diseases , Humans , Nerve Conduction Studies , Retrospective Studies , Neurodegenerative Diseases/diagnosis , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Muscle Weakness
12.
Prostaglandins Other Lipid Mediat ; 169: 106769, 2023 12.
Article En | MEDLINE | ID: mdl-37625781

Charcot-Marie-Tooth Disease (CMT) is a commonly inherited peripheral polyneuropathy. Clinical manifestations for this disease include symmetrical distal polyneuropathy, altered deep tendon reflexes, distal sensory loss, foot deformities, and gait abnormalities. Genetic mutations in heat shock proteins have been linked to CMT2. Specifically, mutations in the heat shock protein B1 (HSPB1) gene encoding for heat shock protein 27 (Hsp27) have been linked to CMT2F and distal hereditary motor and sensory neuropathy type 2B (dHMSN2B) subtype. The goal of the study was to examine the role of an endogenous mutation in HSPB1 in vivo and to define the effects of this mutation on motor function and pathology in a novel animal model. As sphingolipids have been implicated in hereditary and sensory neuropathies, we examined sphingolipid metabolism in central and peripheral nervous tissues in 3-month-old HspS139F mice. Though sphingolipid levels were not altered in sciatic nerves from HspS139F mice, ceramides and deoxyceramides, as well as sphingomyelins (SMs) were elevated in brain tissues from HspS139F mice. Histology was utilized to further characterize HspS139F mice. HspS139F mice exhibited no alterations to the expression and phosphorylation of neurofilaments, or in the expression of acetylated α-tubulin in the brain or sciatic nerve. Interestingly, HspS139F mice demonstrated cerebellar demyelination. Locomotor function, grip strength and gait were examined to define the role of HspS139F in the clinical phenotypes associated with CMT2F. Gait analysis revealed no differences between HspWT and HspS139F mice. However, both coordination and grip strength were decreased in 3-month-old HspS139F mice. Together these data suggest that the endogenous S139F mutation in HSPB1 may serve as a mouse model for hereditary and sensory neuropathies such as CMT2F.


Charcot-Marie-Tooth Disease , Mice , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Heat-Shock Proteins/genetics , Mutation/genetics , Disease Models, Animal , Sphingolipids
13.
Biochem Pharmacol ; 216: 115760, 2023 10.
Article En | MEDLINE | ID: mdl-37604292

Type 1 Charcot-Marie-Tooth disease (CMT1) is the most common demyelinating peripheral neuropathy. Patients suffer from progressive muscle weakness and sensory problems. The underlying disease mechanisms of CMT1 are still unclear and no therapy is currently available, hence patients completely rely on supportive care. Balancing protein levels is a complex multistep process fundamental to maintain cells in their healthy state and a disrupted proteostasis is a hallmark of several neurodegenerative diseases. When protein misfolding occurs, protein quality control systems are activated such as chaperones, the lysosomal-autophagy system and proteasomal degradation to ensure proper degradation. However, in pathological circumstances, these mechanisms are overloaded and thereby become inefficient to clear the load of misfolded proteins. Recent evidence strongly indicates that a disbalance in proteostasis plays an important role in several forms of CMT1. In this review, we present an overview of the protein quality control systems, their role in CMT1, and potential treatment strategies to restore proteostasis.


Charcot-Marie-Tooth Disease , Humans , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Proteostasis
14.
Gene ; 883: 147684, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37536398

Dominant genetic variants in the mitofusin 2 (MFN2) gene lead to Charcot-Marie-Tooth type 2A (CMT2A), a neurodegenerative disease caused by genetic defects that directly damage axons. In this study, we reported a proband with a pathogenic variant in the GTPase domain of MFN2, c.494A > G (p.His165Arg). To date, at least 184 distinct MFN2 variants identified in 944 independent probands have been reported in 131 references. However, the field of medical genetics has long been challenged by how genetic variation in the MFN2 gene is associated with disease phenotypes. Here, by collating the MFN2 variant data and patient clinical information from Leiden Open Variant Database 3.0, NCBI clinvar database, and available related references in PubMed, we determined the mutation frequency, age of onset, sex ratio, and geographical distribution. Furthermore, the results of an analysis examining the relationship between variants and phenotypes from multiple genetic perspectives indicated that insertion and deletions (indels), copy number variants (CNVs), duplication variants, and nonsense mutations in single nucleotide variants (SNVs) tend to be pathogenic, and the results emphasized the importance of the GTPase domain to the structure and function of MFN2. Overall, three reliable classification methods of MFN2 genotype-phenotype associations provide insights into the prediction of CMT2A disease severity. Of course, there are still many MFN2 variants that have not been given clear clinical significance, which requires clinicians to make more accurate clinical diagnoses.


Charcot-Marie-Tooth Disease , Neurodegenerative Diseases , Humans , Mutation , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , GTP Phosphohydrolases/genetics , Genetic Association Studies , Mitochondrial Proteins/genetics , Mitochondrial Proteins/chemistry
15.
Neuromuscul Disord ; 33(8): 677-691, 2023 08.
Article En | MEDLINE | ID: mdl-37400349

Congenital hypomyelinating polyneuropathy (HPN) restricted to the peripheral nervous system was reported in 1989 in two Golden Retriever (GR) littermates. Recently, four additional cases of congenital HPN in young, unrelated GRs were diagnosed via neurological examination, electrodiagnostic evaluation, and peripheral nerve pathology. Whole-genome sequencing was performed on all four GRs, and variants from each dog were compared to variants found across >1,000 other dogs, all presumably unaffected with HPN. Likely causative variants were identified for each HPN-affected GR. Two cases shared a homozygous splice donor site variant in MTMR2, with a stop codon introduced within six codons following the inclusion of the intron. One case had a heterozygous MPZ isoleucine to threonine substitution. The last case had a homozygous SH3TC2 nonsense variant predicted to truncate approximately one-half of the protein. Haplotype analysis using 524 GR established the novelty of the identified variants. Each variant occurs within genes that are associated with the human Charcot-Marie-Tooth (CMT) group of heterogeneous diseases, affecting the peripheral nervous system. Testing a large GR population (n = >200) did not identify any dogs with these variants. Although these variants are rare within the general GR population, breeders should be cautious to avoid propagating these alleles.


Charcot-Marie-Tooth Disease , Polyneuropathies , Humans , Animals , Dogs , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/veterinary , Charcot-Marie-Tooth Disease/pathology , Proteins/genetics , Heterozygote , Polyneuropathies/genetics , Polyneuropathies/veterinary , Alleles , Mutation , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Intracellular Signaling Peptides and Proteins/genetics , Myelin P0 Protein/genetics
16.
Brain ; 146(10): 4336-4349, 2023 10 03.
Article En | MEDLINE | ID: mdl-37284795

Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.


Charcot-Marie-Tooth Disease , Female , Humans , Male , Charcot-Marie-Tooth Disease/pathology , Connexins/genetics , Mutation/genetics , Mutation, Missense , Phenotype , Gap Junction beta-1 Protein
17.
Brain ; 146(10): 4025-4032, 2023 10 03.
Article En | MEDLINE | ID: mdl-37337674

Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3' untranslated region (3'-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3'-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wild-type and mutant 3'-UTR showed significantly increased reporter assay activity in the latter, which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development.


Charcot-Marie-Tooth Disease , MicroRNAs , Humans , Charcot-Marie-Tooth Disease/pathology , MicroRNAs/genetics , DNA Copy Number Variations , Myelin Proteins/genetics , Myelin Proteins/metabolism , Gene Expression
18.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article En | MEDLINE | ID: mdl-37372933

The implementation of NGS methods into clinical practice allowed researchers effectively to establish the molecular cause of a disorder in cases of a genetically heterogeneous pathology. In cases of several potentially causative variants, we need additional analysis that can help in choosing a proper causative variant. In the current study, we described a family case of hereditary motor and sensory neuropathy (HMSN) type 1 (Charcot-Marie-Tooth disease). DNA analysis revealed two variants in the SH3TC2 gene (c.279G>A and c.1177+5G>A), as well as a previously described variant c.449-9C>T in the MPZ gene, in a heterozygous state. This family segregation study was incomplete because of the proband's father's unavailability. To evaluate the variants' pathogenicity, minigene splicing assay was carried out. This study showed no effect of the MPZ variant on splicing, but the c.1177+5G>A variant in the SH3TC2 gene leads to the retention of 122 nucleotides from intron 10 in the RNA sequence, causing a frameshift and an occurrence of a premature stop codon (NP_078853.2:p.Ala393GlyfsTer2).


Charcot-Marie-Tooth Disease , Humans , Virulence , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Frameshift Mutation , Codon, Nonsense , Mutation , Intracellular Signaling Peptides and Proteins/genetics , Myelin P0 Protein/genetics
19.
Brain ; 146(9): 3608-3615, 2023 09 01.
Article En | MEDLINE | ID: mdl-37143322

The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFß4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFß4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFß4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFß4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.


Charcot-Marie-Tooth Disease , Animals , Mice , Charcot-Marie-Tooth Disease/pathology , Myelin Proteins/metabolism , Schwann Cells , Phenotype , Transforming Growth Factor beta/metabolism
20.
J Peripher Nerv Syst ; 28(2): 150-168, 2023 06.
Article En | MEDLINE | ID: mdl-36965137

Charcot-Marie-Tooth (CMT) neuropathies are a group of genetically and phenotypically heterogeneous disorders that predominantly affect the peripheral nervous system. Unraveling the genetic and molecular mechanisms, as well as the cellular effects of CMT mutations, has facilitated the development of promising gene therapy approaches. Proposed gene therapy treatments for CMTs include virally or non-virally mediated gene replacement, addition, silencing, modification, and editing of genetic material. For most CMT neuropathies, gene- and disease- and even mutation-specific therapy approaches targeting the neuronal axon or myelinating Schwann cells may be needed, due to the diversity of underlying cellular and molecular-genetic mechanisms. The efficiency of gene therapies to improve the disease phenotype has been tested mostly in vitro and in vivo rodent models that reproduce different molecular and pathological aspects of CMT neuropathies. In the next stage, bigger animal models, in particular non-human primates, provide important insights into the translatability of the proposed administration and dosing, demonstrating scale-up potential and safety. The path toward clinical trials is faced with further challenges but is becoming increasingly feasible owing to the progress and knowledge gained from clinical applications of gene therapies for other neurological disorders, as well as the emergence of sensitive outcome measures and biomarkers in patients with CMT neuropathies.


Charcot-Marie-Tooth Disease , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/therapy , Charcot-Marie-Tooth Disease/pathology , Mutation , Phenotype , Schwann Cells
...